
The lrd package: An R package and Shiny application for processing
lexical data

Nicholas P. Maxwell1 & Mark J. Huff1 & Erin M. Buchanan2

Accepted: 26 September 2021 /Published online: 30 November 2021
The Psychonomic Society, Inc. 2021

Abstract
Recall testing is a common assessment to gauge memory retrieval. Responses from these tests can be analyzed in several ways;
however, the output generated from a recall study typically requires manual coding that can be time intensive and error-prone
before analyses can be conducted. To address this issue, this article introduces lrd (Lexical Response Data), a set of open-source
tools for quickly and accurately processing lexical response data that can be used either from the R command line or through an R
Shiny graphical user interface. First, we provide an overview of this package and include a step-by-step user guide for processing
both cued- and free-recall responses. For validation of lrd, we used lrd to recode output from cued, free, and sentence-recall
studies with large samples and examined whether the results replicated using lrd-scored data. We then assessed the inter-rater
reliability and sensitivity and specificity of the scoring algorithm relative to human-coded data. Overall, lrd is highly reliable and
shows excellent sensitivity and specificity, indicating that recall data processed using this package are remarkably consistent with
data processed by a human coder.

Keywords Memory . Cued recall . Free recall . Lexical retrieval . Recall processing . Recall scoring

People are generally able to acquire new knowledge with rel-
ative ease. Much of our understanding of how individuals
organize and store learned information comes from the use
of recall tests (see Polyn et al., 2009 for review). Typical recall
paradigms present participants with a set of to-be-remembered
items, and participants are asked to recall them on a later test.
Recall can either be assessed via free report, in which individ-
uals report information frommemory with few, if any, cues or
constraints (free recall), or by the presentation of a cue that is
used to direct their retrieval (cued recall). Recall tests are rou-
tine in memory research, including studies investigating the
effectiveness of different memory strategies (e.g., deep vs.
shallow encoding tasks; Craik & Lockhart, 1972), survival
processing (e.g., assessing memory for contaminated
objects; Gretz & Huff, 2019), and metacognition (e.g.,
accuracy between judgments of learning and recall; Koriat &

Bjork, 2005). Furthermore, because studies often employ
words as stimuli (i.e., cue-target pairs), a large body of re-
search has been conducted to explore how the lexical proper-
ties of the cue and target can later recall (word frequency,
Criss et al., 2011; e.g., concreteness, Paivio et al., 1988) or
how the semantic relationships between pairs affect recall
(Maxwell & Buchanan, 2020). Though the research questions
differ, recall studies generally employ lexical information in
some capacity, either as the stimuli that participants are re-
quired to study, the dependent variable of interest, or more
commonly, through a combination of the two.

Cued-recall testing is a well-known paradigm and has been
used extensively in psychological research. For example, cur-
sory searches of Google Scholar for the keywords “cued re-
call” and “free recall” conducted in April of 2021 yielded
approximately 18,000 and 48,000 publications, respectively,
published since the year 2000. These results spanned multiple
subfields of psychology including neuroscience, psycholin-
guistics, and cognitive aging. Additionally, the rise of the
Internet, combined with more powerful computers, has made
it easier for researchers to conduct recall testing by providing
access to platforms for participant recruitment and computer-
based testing. Furthermore, in addition to aiding data collec-
tion, the Internet has allowed information about lexical char-
acteristics of stimuli (such as word length or frequency) to be

* Nicholas P. Maxwell
nicholas.maxwell@usm.edu

1 The University of Southern Mississippi, School of Psychology, 118
College Dr, Hattiesburg, MS 39406, USA

2 Harrisburg University of Science and Technology, Harrisburg, PA,
USA

Behavior Research Methods (2022) 54:2001–2024
https://doi.org/10.3758/s13428-021-01718-y

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-021-01718-y&domain=pdf
mailto:nicholas.maxwell@usm.edu

more efficiently collected and organized. As a result, the past
two decades have provided researchers with access to a grow-
ing number of normed databases with which to construct lex-
ical stimuli for use within recall studies (e.g., The English
Lexicon Project, Balota et al., 2007; The Small World of
Words, De Deyne et al., 2019; The Semantic Priming
Project, Hutchison et al., 2013). Recently, online tools to aid
researchers in selecting stimuli from the appropriate normed
database have been made available (e.g., The Linguistic
Annotated Bibliography, Buchanan et al., 2019) and computer
applications such as the lexOPS package for R (Taylor et al.,
2020) have been developed to automate the stimuli selection
process entirely while controlling for several types of word
properties. Though there has been a proliferation of datasets
and tools used to aid researchers with stimuli creation, little
attention has been given to developing tools that assist re-
searchers with processing the large amounts of data that are
generated from these studies.

Since studies investigating memory using both cued- and
free-recall testing typically generate large amounts of lexical
text data, processing the output is often time-consuming and
tedious. Furthermore, the number of participants recruited to
take part in these studies has drastically increased within the
past decade, partially as a response to the replication crisis
(Maxwell et al., 2015), which has resulted in a greater need
for efficient and accurate methods for processing recall data.
As such, the purpose of this paper is to introduce the lrd
(lexical response data) package, which has been designed to
provide researchers with a set of simple and freely accessible
tools that can be used to speed up scoring of text responses
from recall studies.

Output from cued- and free-recall tests is generally scored
by matching participants’ retrievals of study stimuli to a scor-
ing key containing the correctly studied memory items.
Though typed responses are unquestionably easier to process
relative to handwritten responses, each item retrieved must be
manually checked against the key to determine accuracy. For
large datasets, manually scoring data is arduous, resulting in
hours of checking participant responses against an answer
key.While such tasks can generally be divided across research
assistants, manual scoring is still a time-consuming endeavor
depending on the amount of data requiring processing.
Furthermore, multiple scorers can potentially introduce error
in the coded responses, as inconsistencies across raters may
arise if not properly controlled for (i.e., addressing participant
misspellings, plural vs. singular nouns, alternate tenses, etc.)
and scoring discrepancies are not resolved. Finally, if scoring
is not conducted blind to experimental conditions, potential
biases may influence the final scored output.

To reduce the overall time spent processing raw output and
potential coder inaccuracies, an alternative method is to auto-
mate the data coding processes by employing a computer
application that can automatically compare participant

responses relative to a scoring key. However, simple text
matching of responses does not account for participant errors
in responses, such as misspellings or embedded coding pro-
vided by the survey software (e.g., extra spaces, tabs,
newlines, etc.). These items still represent a correct memory;
however, more sophisticated text processing is required.
While a human scorer can easily correct any minor character
additions, omissions, or misspellings to correctly score re-
trieved memory items, an automated one-to-one matching
program may not score these items correctly unless a suffi-
cient degree of flexibility is programmed into the scoring
package. Instead, lrd takes a fuzzy string-matching approach
in which response strings are counted as correct if they closely
approximate the key rather than match it exactly (see Singla &
Garg, 2012, for review).

By using fuzzy string-matching, the functions comprising
the lrd package have been specifically designed to accurately
score lexical text data while granting increased flexibility for
minor errors that may be present in recall output, as deter-
mined by the user. The goal of this article is two-fold. First,
we provide brief overviews of each function contained in the
lrd package in the R environment and detail the corresponding
R Shiny application by providing step-by-step guides on how
to implement each of these tools to process several types of
recall data. Second, we test the accuracy and reliability of the
scoring algorithm by comparing output obtained from this
package with human-coded data using four large data sets.
Specifically, we test this package’s reliability by using its core
scoring functions to recode cued-recall data derived from two
recently published cued-recall studies (Maxwell & Buchanan,
2020; Maxwell & Huff, 2021), a study employing a free-recall
task (Huff et al., 2018), and a study using sentence-recall task
(Geller et al., 2020). For each study, we then compare data
processed using lrd to the findings in the original human-
coded datasets and tested whether the original findings report-
ed in these studies replicate using lrd. By including functions
for multiple recall test types, lrd can be applied to a wide
variety of memory studies. Additionally, this allowed us to
assess whether scoring accuracy changes as a function of test
type.

For the two cued-recall studies, participants studied lists of
paired associates and judged either how related the words in
each pair were (Maxwell & Buchanan, 2020) or how likely
they would remember the second word if cued by the first at
test using a judgment of learning (JOL) rating (Maxwell &
Huff, 2021). Upon conclusion of the study/judgment tasks,
participants completed a distractor task followed by a cued-
recall task in which the first word in each pair was presented
and participants were asked to respond with the item it was
originally paired with (e.g.,mouse- ?). Next, for the free-recall
data derived from Huff et al. (2018), participants studied six
word lists in which list items were either semantically related
or unrelated. Following study of each list, participants then

2002 Behav Res (2022) 54:2001–2024

engaged in a free-recall task. Finally, for the sentence data
taken from Geller et al. (2020), participants listened to a sen-
tence and, following the conclusion of each audio presenta-
tion, were instructed to type as much of the sentence as they
recalled hearing. The recall data reported in each of the above
studies was initially scored by manually checking responses
against a scoring key via human coders. We rescored this
output using lrd to illustrate that output generated automati-
cally from this package can replicate human-scored results
across each recall paradigm with a high degree of precision.

Overview of the lrd package

lrd is an open-source tool developed for the R environment
and an interactive application that consists of several functions
for scoring lexical recall data and assessing the output. This
package’s primary goal is to automate the scoring process by
matching participant responses to a list of correct responses
stored in a key. Critically, this package has been designed to
accomplish this task while granting flexibility towards partic-
ipant response errors (e.g., misspellings or incorrect tenses).
We additionally provide functions for specific analyses tied to
free-recall data including serial position curves, conditional
response probabilities, and probability of first recall
(Kahana, 1996; Wahlheim & Huff, 2015).

We begin by providing a set of general instructions for
downloading and installing the lrd package within the R en-
vironment. Next, we provide examples of the scoring func-
tions for three types of recall as well as a set of functions that
can be used to compute recall proportions for each test type.
Third, we provide a general guide on how to use the package
within both the R environment and through the use of a graph-
ical user interface (GUI) implemented in Shiny and
shinydashboard (Chang et al., 2021; Chang & Ribeiro,
2018). Finally, we conclude by assessing the validity of this
package by using the cued-recall, free-recall, and sentence-
scoring functions to process sets of each data type that have
been scored by human coders.

Installation and setup

The latest version of lrd (including all applicable documenta-
tion and source code for each function) can be accessed via
GitHub (https://github.com/npm27/lrd). While proficiency
with R is not required to run this package, it is assumed that
users will have some familiarity with the R environment and/
or basic experience with object-oriented programming.
Installation is relatively straightforward, but currently requires
the use of the devtools package (Wickham et al., 2020) to
download and install the files from GitHub. Typing the fol-
l ow i n g c omma n d , devtools::install_

github('npm27/lrd') will begin the installation pro-
cess by downloading and installing the latest version of lrd.
By providing this package via GitHub, researchers can con-
tribute, fork (i.e., make a copy), and modify functions of this
package as needed. Installation using devtools will always be
supported, and updated installation instructions will be pro-
vided when applicable on the README for the package. To
begin using lrd, be sure to first load the package by using
library(lrd). Each function has been documented with
information about the arguments and outputs stored within
that function. Use ?function name to view the documentation
and examples provided within the R working environment
(i.e., ?prop_correct_cued). Several example datasets
are also provided within the package to demonstrate the three
main scoring functions.

Cued-recall scoring functions example

In this section, we provide a general guide to using lrd to score
cued-recall data. This example uses a set of simulated re-
sponse data that was designed to mimic output that might be
obtained from a cued-recall study.While the dataset is smaller
than what is typically generated from psychological experi-
ments, we note that this set of responses is sufficient for our
purpose of illustrating how lrd scores participant output. We
begin this section by detailing the creation of this dataset be-
fore providing a step-by-step walkthrough of the lrd pack-
age’s cued-recall scoring functions. Code and data for all ex-
amples have been made available at https://osf.io/admyx/ and
within the packages as vignettes.

Materials and dataset creation

To simulate a set of cued-recall data, 40 words were randomly
generated using LexOPS (Taylor et al., 2020) to serve as target
items (i.e., the scoring key containing correct responses). To
simplify the stimuli selection process, we followed the general
example provided by Taylor et al. by controlling for word
prevalence and concreteness when generating this set of items.
First, only highly concrete words were included (concreteness
≥ 4, Brysbaert et al., 2014). Pairs were then evenly split based
on word prevalence (e.g., the proportion of individuals who
are familiar with a word, Brysbaert et al., 2019). Thus, the
final stimuli consisted of 20 concrete, high-prevalence words
(i.e., prevalence ≥ 4) and 20 concrete, low-prevalence words
(i.e., prevalence ≤ 2).

We next simulated six sets of participant responses to these
items. These response simulations varied in their degree of
accuracy to cover a broad spectrum of potential participant
responses, including no response errors (Participant 1), minor
misspellings (Participants 2, 3, and 4), and major response
errors (e.g., blank responses, incorrect answers, misspellings

Behav Res (2022) 54:2001–2024 2003

https://github.com/npm27/lrd
https://osf.io/admyx/

of more than two letters; Participants 5 and 6). For Participant
1, all responses matched the key to simulate a situation in
which a participant correctly recalls all items. Data for
Participants 2 and 3 were manipulated to simulate situations
in which participants makeminor mistakes at recall that do not
necessarily preclude their responses from being counted as
correct (e.g., misspellings where it is evident what the
intended word is). These were generated by removing, replac-
ing, or doubling specific letters. As such, the letter e was
removed from all responses for subject 2 (e.g., hey becomes
hy). For Participant 3, all instances of the letter twere doubled
(e.g., edit becomes editt). Next, for Participant 4, all instances
of the letter awere replaced with an e. This procedure allowed
us to simulate a range of common participant errors such as
omitting a letter, typing the wrong letter, or double pressing a
key by mistake. Finally, data for Participants 5 and 6 were
manipulated to simulate situations in which participants make
major mistakes on recall (e.g., responding with an incorrect
word). To simulate this type of response error for Participant
5, five responses from the answer key were randomly changed
to a different but conceptually similar word (e.g., financial
becomes money). The simulated data for Participant 6 in-
creased the number of incorrect responses and added three
instances of missing data.

Formatting and loading the dataset

To view this example in the package, use vignette
("Cued_Recall", package = "lrd") to load the
script and output in one file. When processing data, lrd re-
quires that the input data be arranged in long format, wherein
each row is one trial of participant responses. The package
includes a function to convert wide format data (i.e., one
row per participant), and an example of the data conversion
is shown in the free-recall section below. We can use the
following code to load and view the first six rows of the data1:

> library (lrd)
> data ("cued_recall_manuscript")
> head (cued_recall_manuscript)

Sub.ID Trial_num Cue Target Answer

1 1 1 chlorination ideological ideological

2 1 2 bendy financial financial

3 1 3 topography editing editing

4 1 4 enquiry buzzing buzzing

5 1 5 draconian statistic statistic

6 1 6 speedball stopwatch stopwatch

The following information is required to analyze cued-
recall data with the corresponding column name in this exam-
ple in parentheses: a unique identifier for each participant
(Sub.ID), a participant response column (Answer), and a
unique identifier for each tested item (e.g., such as a trial
number, Trial_num). Additionally, this function requires
an answer key containing the correct responses and a unique
identifier for each key item; however, these columns can ei-
ther be stored as part of the input data or may be stored in a
separate dataframe. The cued-recall dataframe may contain
additional columns (e.g., columns denoting experimental con-
ditions) that can be used to group the output. These columns
must be between-subject values to be included in the output,
with a one-to-one match between participant identifier and
column information. Because scoring is case sensitive, the
response and answer key columns will need to be checked
for case discrepancies. For simplicity, we suggest converting
both the answer key and response columns to lowercase be-
fore scoring the data.

> cued_recall_manuscript$Target <- tolower
(cued_recall_manuscript$Target)
> cued_recall_manuscript$Answer <- tolower
(cued_recall_manuscript$Answer)

Scoring cued-recall data

Scoring cued-recall data with lrd is a relatively straightfor-
ward process with the ability to tweak the analysis to different
desired outputs. We will run the prop_correct_cued()
and save the output as a new object (cued_output)

> cued_output <- prop_correct_cued (data =
cued_recall_manuscript,

+ responses = "Answer",
+ key = "Target",
+ key.trial = "Trial_num",
+ id = "Sub.ID",
+ id.trial = "Trial_num",
+ cutoff = 1,
+ flag = TRUE,
+ group.by = NULL)
>
The data argument should list the dataframe of the partici-

pant answers. The responses argument indicates the column
to find the participant answer, while the key column indicates
the expected answer for that trial. The columns are listed in
quotes if they are in the same dataframe as the data argument;
however, the answer key columns could be listed in another
dataframe to match to the participant answers (i.e., answer_
key$Target). The key.trial and id.trial arguments
indicate how to match the answer key trial numbers to the par-
ticipant data trial numbers. The id argument indicates the

1 When copying code, please note that the arguments in quotes change color
(usually green), as not all quote symbols are recognized by R. Simply delete
them and retype the quotes if they do not copy correctly. > symbols indicate
code has been executed in R.

2004 Behav Res (2022) 54:2001–2024

participant unique identifier. The cutoff column indicates the
Levenshtein distance used for scoring, wherein 0 indicates a
perfect answer to key match, and non-zero numbers indicate
the number of substitutions, deletions, or changes allowed to
consider for matching (Levenshtein, 1966). Levenshtein distance
provides a method of fuzzy string matching wherein distance
values represent the number of character changes required to
transform the first word into the second. For example, two iden-
tical words such as cat and cat would have distance of 0, while
cat and bat would have a distance of 1, and cat and dog would
have a distance of 3. Levenshtein distances are sensitive to
changes in character order, which provides an advantage over
simple character matching, as bear and barewould be computed
as 100% matching but have a Levenshtein distance score of 3.
Given our data simulation, we used a cutoff score of 1 in this
example to demonstrate how lrd can account for simplemisspell-
ings. The flag argument can be set to TRUE to provide the z-
score values for each participant for their final cued-recall score.
Last, the group.argument is used to include grouping variables
to calculate percent recall by group or condition, and more than
one variable can be used by concatenating a vector of column
names (i.e., c("column1", "column2")).

This function provides up to three pieces of output stored in
list format. First, this function provides trial-level data show-
ing participant responses to each test item, the corresponding
answer key item, and whether the program scored the re-
sponse as correct (denoted as 1 for correct, 0 for incorrect):

> cued_output$DF_Scored
Trial.

ID
Sub.
ID

Cue Target Responses Answer Scored

1 1 1 chlorination ideological ideological ideological 1
2 1 3 chlorination ideological ideological ideological 1
3 1 5 chlorination ideological ideological ideological 1
4 1 2 chlorination ideological idological ideological 1
5 1 4 chlorination ideological ideologicel ideological 1
6 1 6 chlorination ideological ideological 0

The second output consists of participant-level data, sum-
marizing the proportion correct for each participant and the
optional z-score for outlier detection:

> cued_output$DF_Participant
Sub.ID Proportion.Correct Z.Score.Participant

1 1 1.00 1.0259784
2 2 0.80 0.0000000
3 3 0.85 0.2564946
4 4 0.95 0.7694838
5 5 0.75 -0.2564946
6 6 0.45 -1.7954621

The last output includes statistics of the grouping condi-
tions if they were included in the scoring function. An exam-
ple of this output is included below.

Free-recall scoring functions example

The next section provides a general guide for using lrd to
score free-recall data. For this example, we simulated a set
of free-recall responses. The sample data were modeled after
output obtained by Gretz and Huff (2019) in which partici-
pants watched videos of either healthy or sick individuals
interacting with a variety of household objects and were tested
via free-recall. First, we by detail the creation of this dataset.
We then provide a detailed walkthrough of the lrd package’s
free-recall scoring function.

Materials and dataset creation

To simulate a set of free-recall data, a list of 22 common
household objects was first generated. This list was based on
the “bedroom” video used by Gretz and Huff (2019), which
can be viewed at https://osf.io/qbrgm/. Next, to simulate a set
of responses, data were generated for six participants. To
capture response variability, we varied the number of
responses each participant provided, spelling errors of
correct items, and inclusion of incorrect items. The full
sample dataset and answer key files as well as all code used
in the following examples have been made available at https://
osf.io/admyx/. You can use vignette("Free_
Recall", package = "lrd")to view this example
within the package.

Formatting and loading the dataset

In this example, we will load a free-recall dataset using
data(wide_data) and the answer key for the free-recall
lists with data(answer_key_free). The dataset is
structured in wide format, such that each participant is the
one row in the data frame:such that each participant

> head(wide_data)

Sub.ID Response Disease.Condition

1 basket, chair, clothes, flowrs, glasses, fan,
windows,…

healthy

2 windows, bed, books, shelf, pictures healthy

3 bacpack, chair, glasses, mirror, iphone,
pillow, …

healthy

4 vase, blinds, computer, magazine, books,
bed, blanket, …

sick

5 bed, blankets, closet, windows, books, fan sick

6 bed, blankets, dreser, nightstand, end table,
stereo, …

sick

For all scoring functions, the data should be converted to
long format, which includes one trial per row to properly
match the answer key to the answer for each trial. In the

Behav Res (2022) 54:2001–2024 2005

https://osf.io/qbrgm/
https://osf.io/admyx/
https://osf.io/admyx/

example above, the Response column includes all the an-
swers a participant listed using a comma-separated format. If
the data are structured so that each concept is in a separate
column, the data can be restructured into long format several
ways: reshape (Wickham, 2007) or data.table (Dowle &
Srinivasan, 2020) using the melt() function or tidyverse
(Wickham et al., 2019) using the pivot_longer() func-
tion. In lrd, the arrange_data() function was added to
assist in reformatting participants answers that were entered as
one text string. To convert the wide_data into a useable
long format, use:

> DF_long <- arrange_data(data =
wide_data,

+ responses = "Response",
+ sep = ",",
+ id = "Sub.ID")
The data argument indicates the dataframe containing the

variables defined in the next arguments. The column name of
the responses is denoted in quotes for the responses argu-
ment, and the sep argument indicates the separator between
responses (i.e., a comma, semicolon, space, tab, or other text
delimitator). The id variable is a column name in the
dataframe for the unique participant identifier. In addition, this
function contains an option to include repeated measures col-
umn indicators using the repeated argument for studies
with randomized or multiple study lists. Our new dataframe
DF_long will then be converted to long format:

> head(DF_long)

Sub.ID response position Disease.Condition

1 1 basket 1 healthy

2 1 chair 2 healthy

3 1 clothes 3 healthy

4 1 flowrs 4 healthy

5 1 glasses 5 healthy

6 1 fan 6 healthy

This function first splits the original response column by
the separator, strips out additional whitespaces (i.e., two or
more spaces become one between tokens), and trims
whitespace characters before and after the token(s). The posi-
tion column is added to denote the order of responses for each
participant, and the unique identifier for each participant is
repeated for each of their answers. The last component of this
function is that all between-subject columns will be added
back into the restructured dataframe, provided they have a
one-to-one match with the participant identifier. In this exam-
ple, the Disease.Condition variable is included because
each participant was only assigned into one of the groups. If
there are multiple trials or conditions for free responses, they
should be separated into different dataframes and this process
repeated for each trial-answer key pairing.

The answer key is structured as a dataframe with one col-
umn of information (shown below). However, the answer key
can also be imported by simply typing the answers as a single
vector using the concatenate function c().

> head(answer_key_free)
Answer_Key

1 backpack
2 basket
3 bed
4 blanket
5 blinds
6 books
As with cued-recall scoring, the free-recall functions are

case sensitive and cannot process missing responses. As such,
we again recommend converting both the answer key and
response columns to lowercase.

Scoring free-recall data

With the res t ructured data and answer key, the
prop_correct_free() function can be used to score
the free-recall data. This function will compare the answer
key to the response column created above, and therefore, each
trial of free-recall responses should be analyzed separately.
> free_output <- prop_correct_free(data =
DF_long,
+ responses = "response",
+ key = answer_key_free$Answer_Key,
+ id = "Sub.ID",
+ cutoff = 1,
+ flag = TRUE,
+ group.by = "Disease.Condition")

The arguments for this function are the same as the
prop_correct_cued() function, minus the trial argu-
ments for matching individual trials, as each trial should be
analyzed separately. It is important to note that a non-space
delimiter should be used, as spaces may interfere with multi-
ple word tokens (i.e., picture frame is one correctly recalled
concept in the answer key). We can then view the separate
outputs by printing out the overall dataframe scored:

> free_output$DF_Scored

Responses Sub.ID position Disease.Condition Answer Scored

1 bacpack 3 1 healthy backpack 1

2 basket 1 1 healthy basket 1

3 bed 2 2 healthy bed 1

4 bed 4 6 sick bed 1

5 bed 5 1 sick bed 1

6 bed 6 1 sick bed 1

This dataframe can also be used to ensure that the answers
appear to match the appropriate target word, as two target

2006 Behav Res (2022) 54:2001–2024

concepts that are within one substitution of each other may
present scoring issues within this framework (i.e., if the an-
swer list included both bed and bet). In this example, we
included a group.by argument, and therefore, the participant

data shows the grouping variable and calculates the z-scores
for both participants overall (Z.Score.Participant)
and within their own group (Z.Score.Group):

Last, we find a group summary of mean, standard devia-
tion, and sample size by using:

> free_output$DF_Group

Disease.Condition Mean SD N

1 healthy 0.3095238 0.14433757 3

2 sick 0.2500000 0.06185896 3

Scoring free-recall responses from multiple
lists

Although prop_correct_free()was designed for scor-
ing output from free-recall studies, it is primarily limited to
research designs in which all participants study items taken
from a single list. This function can be used in situations
where participants study multiple lists or lists are randomized
within participants by scoring each list separately. This ap-
proach, however, quickly becomes tedious as the number of
separate lists and answer keys increases. Therefore,
prop_correct_multiple() can be used to score free-
recall responses when participants study multiple sets of lists
or lists are randomly generated by software. This function
takes the same basic inputs as prop_correct_free().
The input data must be a dataframe in long format, and the
user must specify which dataframe columns contain the par-
ticipant responses, the answer key, and the participant identi-
fier. Additionally, prop_correct_multiple() also re-
quires a list identifier (i.e., a unique value indicating which list
response items and key items belong to). Thus, both the
dataset and answer key will require additional columns
denoting this information to indicate which answer key
matches each trial. While key and trial ID information can
be either character strings or numeric values, the list identifiers
must match between the dataset and the key. Use
key.trial and id.trial arguments to specify columns

containing list identifiers for the answer key and input data
columns, respectively. These arguments are demonstrated be-
low in other lrd functions, and for a complete example of
m u l t i p l e l i s t r e c a l l s c o r i n g i n R , u s e
vignette(“Multi_Recall”, package = lrd).

Calculating serial-position-based measures
in free recall

The order of the answer key can be used to calculate serial
position estimates, conditional response probabilities, and
probability of first recall. Serial-position analyses compute
proportions of correct recall as a function of the list position
presented at study and are often used to plot serial-position
curves wherein participants are more likely to remember the
first and last items of a list best (Murdock, 1962). Lag-
conditional response probabilities (lag-CRPs), compute prob-
abilities for correctly recalled items conditionalized on the
distance (i.e., lag) between items presented at study
(Kahana, 1996; Kahana et al., 2002). Typically, lag-CRPs
indicate that recall is highest at adjacent lags (+1 and -1) and
lowest for more distant lags. For instance, if an item from list
position 4 is recalled, recall from adjacent positions (3
and 5) is more likely than from more distant positions.
Finally, probability of first recall (PFR) refers to the recall
probability of the first recalled item from each study set as
a function of the studied list position. PFRs typically in-
dicate greater recall from late position items on immediate
tests (recency effect), but greater recall for early position
items if the test is delayed (primacy effect; Wahlheim &
Huff, 2015). For each of these functions, the output from
free_output$DF_Scored is the expected input.
Vignette “Free_Recall” contains examples for plotting
each function with R using ggplot2 (Wickham et al.,
2021).

> free_output$DF_Participant

Disease.Condition Sub.ID Proportion.Correct Z.Score.Group Z.Score.Participant

1 healthy 1 0.3928571 0.5773503 1.0819232

2 healthy 2 0.1428571 -1.1547005 -1.3096965

3 healthy 3 0.3928571 0.5773503 1.0819232

4 sick 4 0.3214286 1.1547005 0.3986033

5 sick 5 0.2142857 -0.5773503 -0.6263766

6 sick 6 0.2142857 -0.5773503 -0.6263766

Behav Res (2022) 54:2001–2024 2007

To create a dataframe of the percent correct by serial posi-
tion, we can use the serial_position() function:

> serial_output <- serial_position(data = free_output$DF_Scored,
+ key = answer_key_free$Answer_Key,
+ position = "position",
+ scored = "Scored",
+ answer = "Answer",
+ group.by = "Disease.Condition")
> head(serial_output)

Disease.Condition Tested.Position Freq Proportion.Correct SE
1 healthy 1 1 0.3333333 0.2721655
2 healthy 2 1 0.3333333 0.2721655
3 healthy 2 1 0.3333333 0.2721655
4 sick 3 0 0.0000000 0.0000000
5 sick 4 0 0.0000000 0.0000000
6 sick 5 0 0.0000000 0.0000000

In the function, you use similar arguments as our previous
examples. The data is likely a dataframe processed from the
free-recall functions. The key column represents the ordered
answer key. The position argument denotes the position
the participant listed each answer, while the scored argu-
ment indicates the 0 or 1 denoting whether the answer was
scored correct. Last, you can include grouping variables with
the group.by argument. The output is shown next, which
returns information about the grouping conditions (if includ-
ed), the position a word was tested (Tested.Position),
the total number of times the word was correctly indicated
within the acceptable position window (Freq), the proportion
c o r r e c t (i . e . , s um d i v i d e d b y p a r t i c i p a n t s ,
Proportion.Correct), and the standard error (SE).
Items are added to the Sum column if they are scored as cor-
rect and are listed within one item lag of the original tested
position (i.e., item 10 would be correct in position 9 or 11),
except for the first and last item, which are only considered
correct listed as first or last. These data can be used to create a
serial position curve visualization or further descriptive statis-
tic calculations based on researcher interest. Similar outputs
for conditional response probabilities (CRPs) using the
crp() function:

> c r p _ o u t p u t < - c r p (d a t a =
free_output$DF_Scored,

+ key = answer_key_free$Answer_Key,
+ position = "position",
+ scored = "Scored",
+ answer = "Answer",
+ id = "Sub.ID")
> crp_output[c(28:54),]

Sub.ID participant_
lags

Freq Possible.Freq Disease.Condition CRP

28 1 1 1 8 healthy 0.1250000
29 1 2 1 9 healthy 0.1111111
30 1 3 1 9 healthy 0.1111111
31 1 4 1 9 healthy 0.1111111

32 1 5 1 9 healthy 0.1111111
33 1 6 1 9 healthy 0.1111111
34 1 7 0 0 healthy 0.0000000
35 1 8 0 0 healthy 0.0000000
36 1 9 0 0 healthy 0.0000000
37 1 10 1 8 healthy 0.1250000
38 1 11 0 0 healthy 0.0000000
39 1 12 0 0 healthy 0.0000000
40 1 13 0 0 healthy 0.0000000
41 1 14 1 5 healthy 0.2000000
42 1 15 0 0 healthy 0.0000000
43 1 16 0 0 healthy 0.0000000
44 1 17 0 0 healthy 0.0000000
45 1 18 0 0 healthy 0.0000000
46 1 19 0 0 healthy 0.0000000
47 1 20 0 0 healthy 0.0000000
48 1 21 0 0 healthy 0.0000000
49 1 22 0 0 healthy 0.0000000
50 1 23 0 0 healthy 0.0000000
51 1 24 0 0 healthy 0.0000000
52 1 25 0 0 healthy 0.0000000
53 1 26 0 0 healthy 0.0000000
54 1 27 0 0 healthy 0.0000000

The above example displays CRP values across all pos-
itive lags for participant 1 (note that this function also
returns negative lags, but for concision, they have been
omitted from this example). Each lag between subsequent
named items is tallied and then divided by the possible
combinations of subsequent lags given their response pat-
terns. Therefore, the column participant_lags rep-
resents the lag between the studied position and the test
position the item is recalled (e.g., chair was reported in
the second position on the test, which represents a lag of 6
from spot number 8 on the answer key list which corre-
sponds to the studied order). The column Freq represents
the frequency of the lags between listed and shown posi-
tion, while the Possible.Freq column indicates the
number of times that frequency could occur given each
answer listed (e.g., given the current answer, a tally of the
possible lags that could still occur). The CRP column
calculates the conditional response probability, or the fre-
quency column divided by the possible frequencies of
lags. Given that conditional response probability is calcu-
lated by participant, there is no group.by argument;
however, the columns are returned as part of the
dataframe for further analysis if desired. Last, we provide
calculations for the probability of first response:

> p f r _ o u t p u t < - p f r (d a t a =
free_output$DF_Scored,

+ key = answer_key_free$Answer_Key,
+ position = "position",
+ scored = "Scored",
+ answer = "Answer",
+ id = "Sub.ID",
+ group.by = "Disease.Condition")
> head(pfr_output)

2008 Behav Res (2022) 54:2001–2024

Tested.Position Disease.Condition Freq pfr

1 1 healthy 1 0.3333333

2 2 healthy 1 0.3333333

3 3 healthy 0 0.0000000

4 27 healthy 0 0.0000000

5 28 healthy 1 0.3333333

6 1 sick 0 0.0000000

Participant answers are first filtered for their first response,
and these are matched to the original order on the answer key
list (Tested.Position). Then the frequency (Freq) of
each of those answers is tallied and divided by the number
of participants overall or by group if the group.by argument
is included (pfr). Each of these functions can be used to
calculate further statistics or create visualizations, and the in-
cluded Shiny application automatically displays basic visuali-
zations of these functions as part of the free-recall output.
Each of these functions contains a corresponding multiple list
ve r s ion (serial_position_multiple(),
crp_multiple(), and pfr_multiple()) in order to
a c c o m m o d a t e o u t p u t f r o m
prop_correct_multiple(). In each function, use the
key.trial and id.trial arguments to match the answer
key to the specific trial list. The sentence scoring functions
below show an example of these arguments.

Sentence scoring function example

In addition to scoring cued-recall and free-recall responses, lrd
can also be used to score the match between two sentences. In
this section, we provide a general overview of using lrd to
score sentences. This example uses a set of simulated sentence
responses generated for six participants. We begin this section
by detailing the creation of this dataset. We then provide a
detailed walkthrough of the lrd package’s sentence processing
functionality.

Materials and dataset creation

To simulate a set of sentence responses, we first generated a
list of five simple sentences to serve as the answer key. Next,
to simulate a set of responses, sample data were generated for
six participants, leading to a total of 30 observations. To cap-
ture response variability, we varied the amount of error within
each response, such that some sentences included spelling
errors, inclusion of extra words, omission of words, and/or
semantically similar words. The full sample dataset and all
code used in the following example has been made available
at https://osf.io/admyx/.

Formatting and loading the dataset

T o v i e w t h i s e x a m p l e i n R , u s e
vignette("Sentence_Recall", package =
"lrd"). As with our cued-recall example, the data will need
a participant identifier, a trial identifier, the answer key,
the participant’s answer, and any other grouping columns
that may be present. The answer key can be stored sepa-
rately from the participant answers, as the trial identifier
will be used to merge them together. Unless sentence case
is part of the requirements for the study, we would rec-
ommend normalizing all text to lowercase. In our example
below, we simulated extra whitespaces that participants
may use, which will be eliminated as part of the scoring
function.

1 Sub.ID Trial.ID Sentence Response Condition

2 1 1 This is a sentence. This is a
sentence.

a

3 1 2 Woo more
sentences!

Woo more
sentences!

a

4 1 3 This is the thing the
participant

typed.

This is thing the
participant

typed.

a

5 1 4 This is another
example
sentence.

This is another
example
sentence

a

6 1 5 Okay this is the
final thing that

they typed.

Okay this is the
final thing
they typed.

a

7 2 1 This is a sentence. This is sentence. b

Scoring sentence data

To score sentence data with lrd, begin by running
prop_correct_sentence()and save the output as a
new object. This function follows the same general format
as the cued- and free-recall scoring functions. You should
specify the dataframe (data), the columns containing the
participant responses (responses), the answer key (key),
the participant identifier (id), and the trial identifiers
(id.trial, key.trial). Each token will be scored indi-
vidually against the target answer, and the cutoff indicates
the allowable Levenshtein distance. Again, you can flag
outliers by participant and/or grouping variable (group.by).
The token.split argument is used to specify the character
that separates words in each sentence, and the default is a
single space.

> s e n t e n c e _ o u p t u t < -
p r o p _ c o r r e c t _ s e n t e n c e (d a t a =
sentence_data,

+ responses = "Response",
+ key = "Sentence",

Behav Res (2022) 54:2001–2024 2009

https://osf.io/admyx/

+ key.trial = "Trial.ID",
+ id = "Sub.ID",
+ id.trial = "Trial.ID",
+ cutoff = 1,
+ flag = TRUE,
+ group.by = "Condition",
+ token.split = " ")

The overall output contains the scoring for each partici-
pant and item. The entire output can be viewed on our
vignette, and for our example here, we display the new
columns that are added to the dataframe and a few rows
with specific examples of the issues one might encounter
when scoring sentences.

First, each sentence is stripped of punctuation and extra
white space within the function. The total number of tokens,
as split by token.split are tallied for calculating
Proportion.Match. Then, the tokens are matched using
the Levenshtein distance indicated in cutoff, as with the
cued and free-recall functions. The key difference in this func-
t ion is how each type of token is handled. The
Shared.Items column includes all the items that were
matched completely with the original answer (i.e., a cutoff
of 0). The tokens not matched in the participant answer are
then compared to the tokens not matched from the answer key
to create the Corrected.Items column. This column in-
dicates answers that were misspelled but within the cutoff
score and were matched to the answer key (i.e., th for the,
ths for this). The non-matched items are then separated into
Omitted.Items (i.e., items in the answer key not found in
the participant answer), and Extra.Items (i.e., items found
in the participant answer that were not found in the answer
key). The Proportion.Match is calculated by summing
the number of tokens matched in Shared.Items and
Corrected.Items and dividing by the total number of
t o k e n s i n t h e a n s w e r k e y . B o t h
sentence_ouptut$DF_Participant and
sentence_ouptut$DF_Group can be used to view out-
put that has the same information as shown in the cued- and
free-recall sections for participant and group summaries of
proportion correct.

R shiny application

While lrd was initially designed as a package to be used within
the R command environment, we recognized the need for an

easy-to-access option that can be used independent of R. As
such, we have developed a Shiny application that provides re-
searchers with a programming-free alternative to using this tool
that can be operated using basic Excel skills. Furthermore, be-
cause this application is web based (available at https://npm27.
shinyapps.io/lrd_shiny/), no software downloads are required.
The lrd Shiny application is structured as a series of tabs. Upon
opening the application, you will be directed to the Information
Tab (see Fig. 1). From here, the menu on the left can be used to
navigate to the appropriate scoring task. Selecting a task will
open a new tab in which the data and answer key can be
uploaded, and other parameters can be set. For all scoring tasks,
data will need to be structured in long-format, and the Arrange
Data tab can be used prior to scoring to first convert wide-
format data into the appropriate format. Additionally, each of
the three scoring tabs provides options for downloading scored
output for use in R, SPSS, Excel, or other programs. In the
following sections, we provide detailed explanations for each
of the three scoring tabs.

Cued-recall tab

When using the Shiny application to score cued-recall data, the
uploaded dataset needs to be arranged in long format and must
contain the following columns: A unique participant identifier,
participant responses, and a trial number for each recall trial.
Additionally, cued-recall scoring requires an answer key and
trial identifier for each key item (such as a trial number). If the
answer key is embedded in the original participant data, simply
upload the participant data in the answer file section. Finally,
the dataset being scored may contain other columns (e.g., such
as those denoting experimental conditions, demographics, etc.),

> sentence_ouptut$DF_Scored

Proportion.Match Shared.Items Corrected.Items Omitted.Items Extra.Items

2 0.7500000 this is sentence <NA> a <NA>

19 0.8000000 this is example sentence <NA> another an extra

24 0.6000000 this is another <NA> example sentence one

29 0.4444444 this is final th okay thing that typed one

22 1.0000000 is another sentence tis xample <NA> <NA>

10 1.0000000 woo more sentences <NA> <NA> <NA>

2010 Behav Res (2022) 54:2001–2024

https://npm27.shinyapps.io/lrd_shiny/
https://npm27.shinyapps.io/lrd_shiny/

which can be selected using the “group by” option. Figure 2
(top panel) displays the cued-recall tab following data upload.
The Check Your Data box can be used to determine that the
data were uploaded correctly. The rio library is used to import
data and generally provides a correct interpretation of the data,
but errors can occur, generally with data that does not have a
clear column header row (Becker et al., 2021).

After uploading both the dataset and answer key, the
Scoring Set Up box can be used to indicate the columns for
each relevant argument, the scoring cutoff, and the ability to
provide z-scores for outliers. Like the R package, the scoring
denotes the Levenshtein distance between the participant re-
sponse and key item and represents the total number of inser-
tions, deletions, and substitutions one might need to convert
the given response to the answer key. Therefore, a selection of
1 represents a one-letter difference between the response item
and the key, while a selection 5 represents five changes.

Once the appropriate settings have been selected, clicking
“Score Your Data” will begin the scoring process. Scored
output will then be displayed in the Scored Output box located
below the data upload panel corresponding to the
DF_Scored information from the R function (see Fig. 2
bottom panel). Next, the Summarized Output box displays
the participant dataframe with the correct recall proportions.
If a grouping variable was selected, recall proportions at the
group level will also be displayed. Finally, the bottom panel
displays recall proportions plotted as a function of the group-
ing variable. If no grouping variable is selected, this panel will
display a histogram of recall proportion. At the top of each
dataframe output, a set of buttons can be used: Copy for sim-
ple cut and paste of the dataframe, CSV for comma separated

download, or Excel for .xlsx download. Graphs can be saved
by right clicking to save or copy the graph but cannot be edited
within the application.

Free-recall tab

As with cued-recall scoring, free-recall data will also need to
be uploaded in long-format. For simplicity, we suggest
uploading the response data and answer key as two separate
files. First, the participant response data will need to contain at
minimum the responses and a unique participant identifier,
along with grouping variables if desired. Next, the answer
key file should at least contain one column of answers ordered
by serial position. Free-recall data are then scored using the
same general procedure as cued recall. Use the Scoring Set Up
box to denote the appropriate columns for each argument,
select a cut-off score, and flag for outliers. If the upload data
contain a column denoting the order in which items were
recalled, this column can be selected using the “position an-
swered” box and will be used for creating serial position
curves, lag-CRPs, and PFRs. Note that this column is auto-
matically generated if the Arrange Data tab is used to convert
the upload data from wide to long-format (Fig. 3). The scored
dataset is then previewed in the ScoredOutput box, along with
the Summarized Output box at the participant and grouping
levels (Fig. 4). A graph of the free-recall proportions will be
automatically created as a function of the grouping variable(s)
selected or a histogram of participant-level responses. The last
three boxes include the serial position, lag-CRP, and PFR

Fig. 1 Illustration of the lrd Shiny application’s Instructions tab prior to uploading a dataset

Behav Res (2022) 54:2001–2024 2011

Fig. 2 Illustration of the lrd Shiny application’s cued-recall tab prior to uploading a dataset and answer key (top panel) and the Scored Output panel after
scoring (bottom panel). Data in this is example is scored using a Levenshtein distance of 1

2012 Behav Res (2022) 54:2001–2024

dataframes for download and their corresponding plots for
visualization.

Multiple free-recall tab

Becau s e t h e F r e e -Rec a l l t a b i s b a s ed on t h e
prop_correct_free() function, it can only be used to
score free-recall data in which all test items are derived from
the same study list. The Multiple Free-Recall tab can be used

to score free-recall data in which participants or groups are tested
on items taken from several study lists. Like single list free-recall
scoring, multiple list free-recall requires that the uploaded data be
arranged in long format. Additionally, both the answer key and
dataset will each need to contain a column denoting unique list
identifiers. Data upload follows the same general process as used
in the standard free-recall tab, and the Scoring Set Up box con-
tains the same inputs for selecting the appropriate columns for
each argument (e.g., participant responses, participant identifiers,
group options, etc.) as well as two additional inputs for selecting

Fig. 3 Illustration of the lrd Shiny application’s Arrange Data tab. This tab can be used to quickly convert wide format free-recall data into long format
for scoring

Fig. 4 Illustration of the lrd Shiny application’s Free-Recall scoring tab after scoring. Data were scored using a Levenshtein distance of 1

Behav Res (2022) 54:2001–2024 2013

the scoring key and dataset list identifiers (see Fig. 5). Aswith the
Free-Recall tab, multiple recall scoring will return the scored
dataset along with a summary of the output along with a plot
of the free-recall proportions, either at the participant or group
level. Finally, if a column containing serial position data is se-
lected using the “position answered” box, serial position curves,
lag-CRPs, and PFRs will be automatically generated and
displayed in the last three boxes.

Sentence-recall tab

When scoring sentence recall, the data upload process closely
follows cued-recall data scoring. The data will need to be
arranged in long-format such that each row corresponds to
one participant response. Moreover, the response column
should be structured such that each cell contains the full par-
ticipant response (i.e., each cell in the response column con-
tains a full sentence). Example data illustrating the format
required for the upload data is available at: https://osf.io/
mcg9f/. Finally, this data will need to contain each of the
necessary columns from the cued-recall tab. The answer key
can either be included as a column with the upload data or it
can be uploaded as a separate file. When scoring sentence
data, in addition to selecting the cutoff criteria, you will need
to select the delimiter for sentence tokens (i.e., the character(s)
separating each word within the sentences). The token delim-
iter can be typed into the box below the scoring cutoff selec-
tion, and the default is a single space. If a different character
separates words, you will need to delete this space before
typing a different character.

After scoring, the Scored Output box can be used to pre-
view the final dataset. In addition to showing whether the

sentence was correctly recalled, this panel will also return
any tokens omitted from the answer key and any extra words
included in the response (see Fig. 6). Next, the Summarized
Output box displays participant-level and group-level (if spec-
ified) recall proportions. Finally, plots can be viewed via the
graph box located at the bottom of this tab.

Validation of scoring functions

We now turn to set of analyses designed to validate lrd pack-
age’s scoring functions by using lrd to score cued-recall, free-
recall, and sentence-recall datasets and comparing the output
to human-coded data. For each recall task, we first conducted
sensitivity and specificity analyses to determine the optimal
Levenshtein distance for scoring before conducting additional
analyses to assess accuracy and reliability. These analyses
served as additional assessments to ensure that lrd can consis-
tently produce accurate scoring across different sets of stimuli.
We then tested whether the results of these studies would
differ significantly from the original findings after the raw data
were processed and scored using lrd, allowing us to test the
accuracy of this package at the participant level. Finally, we
computed Cohen’s κ to assess reliability between the different
coding sources. We begin this section by testing lrd’s ability
to score cued-recall data. Subsequent sections test scoring of
free recall and sentence recall.

Cued-recall scoring functions validation

In this section, we report results from two sets of analyses in
which we tested the cued-recall scoring accuracy of lrd. First,

Fig. 5 Illustration of the Scoring Set Up box for the Multiple Free-Recall tab. Columns denoting the answer key list ID and dataset list ID are selected
using the “answer key trial ID” and “participant trial ID” columns

2014 Behav Res (2022) 54:2001–2024

https://osf.io/mcg9f/
https://osf.io/mcg9f/

we use lrd to score the datasets used for each set of analyses.
These data were derived from two sources: Maxwell and
Buchanan (2020) and Maxwell and Huff (2021). We begin
by providing details for each dataset, including participant and
stimuli characteristics for each study. We then discuss the
selection criteria for the Levenshtein distance value used at
scoring and detail the results of a set of sensitivity and speci-
ficity analyses that were used to test potential cutoff values
and provide a step-by-step walkthrough of the scoring pro-
cess. Finally, we conclude this section by detailing each of
the analyses described above.

Participants and materials

Each dataset was collected separately across two different
experimental settings. The first set of participants was origi-
nally reported in Maxwell and Buchanan (2020; dataset avail-
able at https://osf.io/y8h7v/). This dataset consists of 222 par-
ticipants who were recruited online via Amazon’s Mechanical
Turk, a site which allows researchers to access a large pool of

participants who complete surveys in exchange for small sums
of money (Buhrmester et al., 2011). Next, Maxwell and
Huff’s (2021) data consists of 112 undergraduate students
who were recruited from a psychology research pool at a large
Southern university and tested in lab (dataset available at
https://osf.io/hvdma/). These participants completed the
study in exchange for partial course credit and were
recruited to take part in one of four experiments. For
purposes of this analysis, we collapsed across experiment to
include all 112 subjects in one dataset. Combining datasets
across studies resulted in 31,301 recall entries from 334
participants.

Datasets were selected due to their similarity in design.
Each study presented participants with paired-associate study
lists and later had them complete cued-recall tasks.
Furthermore, each study contained reasonably sized samples
(all ns > 90) and presented participants with at least 60 item
pairs to study, providing us with a sufficient number of obser-
vations with which to test the reliability of this package. Each
study presented participants with a set of cue-target paired
associates (e.g., credit–card). Participants were asked to study

Fig. 6 Illustration of the lrd Shiny application’s Sentence-Recall scoring tab after scoring. Data were scored using a Levenshtein distance of 1

Behav Res (2022) 54:2001–2024 2015

https://osf.io/hvdma/

each pair before making a judgment of either the pair’s relat-
edness or their ability to recall the pair at test. After completing
the study and judgment tasks, participants then completed a
cued-recall test. While participant judgments were collected in
each experiment, they are not included in the following anal-
yses as we are only interested in analyzing the accuracy of lrd
in scoring recall responses.

Data processing and scoring

To assess the reliability of the cued-recall scoring functions,
we first used lrd to process and score the two cued-recall
datasets introduced above.We then compared output obtained
through this scoring process to the original, manually coded
output reported in these studies and tested whether the initial
findings would replicate. Prior to running the scoring algo-
rithm, .csv files containing participant responses, answer
key, trial numbers, and unique identifiers for each participant
were generated for each dataset. Data from each study were
then scored using the prop_correct_cued() function.
Scoring was an iterative process, which used each of the sug-
gested six Levenshtein distance values (i.e., 0–5). Thus, each
dataset was scored six times, once for each scoring criterion,
which allowed us to track how changing the Levenshtein dis-
tance affected scoring accuracy.

Determining the optimal scoring criterion

Given the lrd package’s scoring functions work by computing
the Levenshtein distance between two strings, we first deter-
mined the optimal distance score that would maximize the
number of correct hits (e.g., true positives) while minimizing
the number of false positives and false negatives. To this end,
we conducted a set of sensitivity and specificity analyses for
each dataset (see Altman & Bland, 1994, for review) compar-
ing each level of lrd-scored data to the original, human-coded
data. Within the context of this study, sensitivity refers to the
proportion of true positives that lrd correctly identifies (i.e., a
participant correctly responds to the cue item with the correct
target word and the program correctly identifies it) divided by
the true positives plus false negatives (i.e., a miss, when the
hand scoring indicates the item was right but lrd does not).
Specificity refers to the proportion of true negatives identified
by the program (i.e., the program correctly identifies that a
participant missed an item at test) divided by the true nega-
tives plus the false positives (i.e., lrd indicates the item was
correct when the hand scoring did not).

Sensitivity and specificity analyses were computed in R
using the caret package (Kuhn, 2008). Table 1 reports sensi-
tivity and specificity percentages for each dataset computed
across of the six Levenshtein distance cutoff values. Overall,

both datasets displayed a consistent pattern of results:
Sensitivity and specificity were each maximized when the
scoring cutoff used a Levenshtein distance of 1, suggesting
that this value allowed the scoring algorithm to achieve max-
imum accuracy. We therefore suggest that a Levenshtein dis-
tance of 1 provides the optimal cutoff value for minimizing
false positives and negatives; however, the program allows
researchers to increase or decrease the cutoff value as desired.

Analyses and results

After determining the optimal range of cutoff values to use
with the scoring functions, we now turn to a set of analyses
that test whether data scored using lrd can successfully repro-
duce the results from each of the original, manually scored
datasets. We begin this section by providing descriptive sta-
tistics of recall rates for both the original and rescored datasets
and then test whether these recall rates differ as a function of
coder. Finally, we compute the inter-rater reliability between
the human-coded and lrd-scored data. Each dataset was ana-
lyzed individually, providing us with two separate tests of the
lrd package’s scoring accuracy. Generalized-eta squared (η2G)
and Cohen’s d effect sizes are reported for significant analyses
of variance (ANOVAs) and t-tests, respectively. As effect size
estimates provide a more useful interpretation of this pack-
age’s scoring accuracy, we elected to set significance for anal-
yses at the standard ɑ < .05 level. We note, however, that all
significant main effects/interactions hold when using a more
stringent ɑ < .001.

Replication of cued-recall studies

To test whether cued-recall data scored using lrd could suc-
cessfully replicate human-coded data, we conducted two one-
way analysis of variance (ANOVA) models, which tested
whether recall cued-rates differed between the seven scoring
types (the six lrd scoring criteria ranging from 0 to 5 plus the
human-coded data). For completeness, means, 95% CIs, and
Cohen’s d effect size indices for all comparisons are reported
in Tables 2 and 3. Starting with the Maxwell and Buchanan
(2020) dataset, a significant effect of scoring type was detect-
ed between the human-coded data and the lrd scored, F(6,
1320) = 558.12, MSE = 3115.42, p < .001, η2G = .26.
However, post hoc analyses indicated that this effect was
largely driven by differences between the higher
Levenshtein distances (i.e., scored using a cutoff of 3 or great-
er) and the human-coded data (ts ≥ 3.19, ds ≥ 0.29). Recall
rates from the lrd-scored data did not significantly differ from
the human-coded data (M = 54.14) when lrd scoring used a
Levenshtein distance of 0 (M = 50.23), 1 (M = 52.14), or 2 (M
= 53.37; ts ≤ 1.23, ps ≥ .209).

2016 Behav Res (2022) 54:2001–2024

Next, for the Maxwell and Huff (2021) dataset, an effect of
scoring type was also detected, F(6, 666) = 1433.93, MSE =
14.82, p < .001, η2G = .53. Post hoc analyses again showed
that this effect was largely driven by differences in mean recall
between the human-coded data (M = 43.96) data that was
scored with lrd using a Levenshtein distance cutoff of 3 or
greater, ts ≥ 3.86, ds ≥ 0.52. Recall rates did not differ between
the human-coded data and any of the other lrd cutoff points, ts
≤ 1.60, ps ≥ .110. Thus, using lrd to score participant re-
sponses did not result in significant changes in outcome across
any of the experiments, particularly when an optimized scor-
ing criterion as based on the sensitivity and specificity analy-
ses was used. As such, these findings suggest that lrd is able to
code cued-recall data equivalently to human coders.

Inter-rater reliability

To test the inter-rater reliability between the original data and
the rescored data, we computed κ values for all data sets at the
individual trial level. These values were computed in R using
the psych package (Revelle, 2020). The κ statistic ranges from

-1 to 1, and inter-rater reliability is considered strong if κ
exceeds .80 (Cohen, 1960). Beginning with the Maxwell
and Buchanan (2020) data, a strong agreement was detected
between the human-coded data and response sets scored using
Levenshtein distances of 0, 1, and 2, κs ≥ .96, with this agree-
ment weakening when the data were scored using higher
Levenshtein distances. The Maxwell and Huff (2021) dataset
showed a similar pattern of agreement between coding
methods, with strong agreement for Levenshtein distances less
than 3, κs ≥ .94, and weaker agreement when more liberal
scoring criteria were used (κs ≤ .85). Table 4 reports individ-
ual κ statistics for all comparisons within each dataset. Across
datasets, reliability between human- and lrd-scored data was
highest when a Levenshtein distance of 1 was used, and low-
est when scoring used a Levenshtein distance of 5. These
results provide further evidence that using lrd to score cued-
recall responses results in output that is highly consistent with
what is produced by human coders.

Free-recall scoring functions validation

We now turn to a set of analyses in which we evaluated the lrd
package’s ability to accurately score free-recall data. First, we
detail the dataset, including all participant and stimuli charac-
teristics. We follow the same general procedure used to vali-
date the cued-recall functions, including the use of sensitivity
and specificity analyses to test potential cutoff values and
comparing the lrd-scored output to the original human-
coded data as a test of whether the original results can repli-
cate. Finally, we conclude the analyses by computing Cohen’s
κ to assess reliability between the various coding sources.

Participants and materials

All data used in these analyses were originally published in
Experiment 4A of Huff et al. (2018), who recruited 120 par-
ticipants to complete the study online via Amazon’s

Table 1 Sensitivity and specificity results for cued recall

Scoring
criteria

Maxwell and Buchanan
(2020)

Maxwell and Huff (2021)

Sensitivity
(%)

Specificity
(%)

Sensitivity
(%)

Specificity
(%)

lrd 0 99 94 99 93

lrd 1 99 96 99 97

lrd 2 97 96 97 98

lrd 3 80 97 87 99

lrd 4 47 98 62 99

lrd 5 24 99 40 99

Note. Column labels indicate Levenshtein distance used at scoring.
Values denote percentages.

Table 2 Mean cued-recall rates
as a function of human-coded and
lrd-scored data collapsed across
item type in Maxwell and
Buchanan (2020)

Group M HC lrd 0 lrd 1 lrd 2 lrd 3 lrd 4

Human-coded 54.14 (3.47) --

lrd 0 50.72 (3.58) 0.13 --

lrd 1 52.14 (3.57) 0.07 0.05 --

lrd 2 53.37 (3.53) 0.03 0.10 0.05 --

lrd 3 61.30 (2.91) 0.29* 0.43* 0.37* 0.32* --

lrd 4 77.42 (1.86) 1.10* 1.24* 1.17* 1.12* 0.87* --

lrd 5 88.48 (1.09) 1.76* 1.88* 1.82* 1.77* 1.63* 0.96*

Note.Mean recall rates for each scoring condition. 95% CIs are in parentheses. HC = Human-coded data. HC and
lrd columns indicate Cohen’s d effect sizes for post-hoc comparisons, * = p < .05.

Behav Res (2022) 54:2001–2024 2017

Mechanical Turk. Recall was assessed across three types of
study lists: Categorical lists in which items were strongly re-
lated, ad hoc lists in which items were weakly related, and
unrelated lists. Six lists of 20 items were generated, and par-
ticipants studied two lists of each type (i.e., 40 of each item
type). Following presentation of each list, participants com-
pleted a free-recall test. This experiment provided us with 720
individual free-recall tests (120 participants × 6 list presenta-
tions). Across tests, participants made a total of 6520 correct
responses (out of 14,400 potentially correct responses).

Data processing and scoring

To assess the reliability of the free-recall scoring functions, we
began by generating a scoring key for each of the six lists.
Lists were combined by type (ad hoc, categorical, unrelated)
resulting in three unique key lists. Lists were then arranged
into long format using the reshape package (Wickham, 2007).
The final answer key file contained each list along with a “List
Type” column denoting whether the key item belonged to the
ad hoc, categorial, or unrelated list. We then used lrd’s
arrange_data() function to convert participant re-
sponses into long format. Following reshaping of the dataset,
we created a “List Type” column denoting which answer key
to use for scoring, which corresponded to the “List Type”
column in the answer key. The dataset was then scored using

prop_correct_multiple(). This scoring was an itera-
tive process which used each of the six cutoff values as used in
the sensitivity and specificity analyses, allowing us to monitor
how changes to the Levenshtein distance selected for scoring
affected the scored output. The final dataset was created by
combining the scored output at each of the six cutoff values
with the original human-coded data.

Determining the optimal scoring criterion

Before testing whether lrd could successfully replicate
human-coded free-recall data, we again needed to determine
the optimal cutoff value for this function that would maximize
the number of correct hits (e.g., true positives) while minimiz-
ing the number of false positives and false negatives. To do so,
we again turn to a series of sensitivity/specificity analyses for
each dataset. These analyses followed the same design used
when validating the cued-recall functions. Table 5 displays
sensitivity and specificity percentages for each dataset for
each of the selected cutoff values. Each of the three datasets
displayed similar results. Sensitivity and specificity weremax-
imized when the Levenshtein distance was set at either 1 (ad
hoc and categorical lists) or 0 (unrelated lists), though both
cutoffs were very similar, indicating that either cutoff would
b e app r op r i a t e . We no t e , howeve r , t h a t bo t h
p r o p _ c o r r e c t _ f r e e () a n d
prop_correct_multiple() allow this value to be
edited as desired, providing users with maximum control over
the scoring process.

Analyses and results

We next conducted a series of analyses that tested whether
free-recall data scored with lrd successfully replicates the re-
sults from the original human-coded dataset. First, we provide
descriptive statistics of recall rates for both the original and
rescored datasets. Next, we test whether these recall rates

Table 3 Mean cued-recall rates
as a function of human-coded and
lrd-scored data collapsed across
associative direction items in
Maxwell and Huff (2021)

Group M HC lrd 0 lrd 1 lrd 2 lrd 3 lrd 4

Human-coded 43.96 (6.57) --

lrd 0 41.06 (6.59) 0.21 --

lrd 1 43.11 (6.59) 0.06 0.15 --

lrd 2 44.86 (6.58) 0.06 0.28* 0.13 --

lrd 3 50.83 (6.42) 0.52* 0.75* 0.59* 0.46* --

lrd 4 64.84 (5.51) 1.79* 2.08* 1.67* 1.74* 1.33* --

lrd 5 77.69 (4.21) 3.15* 3.49* 3.15* 3.12* 2.81* 1.76*

Note.Mean recall rates for each scoring condition. 95% CIs are in parentheses. HC = Human-coded data. HC and
lrd columns indicate Cohen’s d effect sizes for post hoc comparisons, * = p < .05.

Table 4 Inter-rater reliability statistics (Cohen’s κ) for Maxwell and
Buchanan (2020) and Maxwell and Huff (2021)

Experiment lrd 0 lrd 1 lrd 2 lrd 3 lrd 4 lrd 5

MB .93 .95 .94 .79 .49 .24

MH .94 .97 .96 .85 .59 .36

Note. MB = Maxwell and Buchanan, 2020; MH = Maxwell and Huff
(2021). lrd columns indicate Levenshtein distance used at scoring. All
values are Cohen’s κ between human-scored data and data scored at each
lrd cutoff.

2018 Behav Res (2022) 54:2001–2024

differ as a function of coding. Finally, we conclude this sec-
tion by computing the inter-rater reliability between the
human- and lrd-coded datasets.

Replication of free-recall studies

First, data from each of the three list types were scored with lrd
using all six Levenshtein distance cutoff values between 0 and 5.
Next, three one-way ANOVAs were used to test whether recall
rates differed between the seven scoring types (the six lrd scoring
criteria plus the human-coded data) for each of the three study list
types. For completeness, means, 95% CIs and Cohen’s d effect
size estimates for all comparisons are reported in Table 6.
Beginning with the categorical list items, significant differences
were detected between the human-coded data and the lrd scored,
F(6, 833) = 2.37,MSE = 261.02, p = .028, η2G = .017. Post hoc
testing, however, indicated that this effect was primarily driven
by differences in mean recall between the human-coded data and
the 0 cutoff, t(237) = 1.99, SEM = .019, p = .048, d = 0.25, and
differences between the lrd-scored datasets at the strict and le-
nient cutoffs (ts ≥ 2.10, ds ≥ 0.27). Correct recall did not signif-
icantly differ between the human-coded data and any of the other
lrd cutoff points, ts ≤ 1.63, ps ≥ .105. Furthermore, this pattern
failed to extend to the ad hoc lists, F(6, 833) = 1.19, MSE =

273.41, p = .310, η2G = .008, and the unrelated lists, F(6, 833)
= 1.40, MSE = 294.51, p = .269, η2G = .009, as no effect of
scoring type was detected. As such, using lrd to score free-
recall responses did not result in significant changes in outcome
across any of the datasets, regardless of whether a strict or lenient
scoring criterion was selected. Thus, the results of these analyses
indicate that lrd can score free-recall data equivalently to human
coders.

Inter-rater reliability

Finally, we computed κ values for all data sets at the individ-
ual trial level as a test of inter-rater reliability. Starting with the
categorical list, a strong agreement was detected between the
human-coded data and the lrd-scored data when using each of
the six scoring conditions, κs ≥ .89. Next, for the ad hoc
dataset, a strong pattern of agreement was again detected, with
agreement being strongest when scoring used cutoffs of 0, 1,
and 2 (κs ≥ .90) while strength of agreement decreased when
scoring used a cutoff of 3 or greater (κs ≤ .87). Finally, the
unrelated list exhibited a pattern similar to the categorical lists,
as the agreement observed between the human- and lrd-coded
data was strongest when scored using cutoffs of 0, 1, and 2 (κs
≥ .92) and again decreased when using more lenient cutoffs
(κs ≤ .87). Table 7 reports individual κ statistics for all com-
parisons between human- and lrd-scored responses within
each dataset. Based on the results of these analyses, we sug-
gest using a Levenshtein cutoff of 1 when scoring free-recall
responses. Taken together, the results of these analyses pro-
vide further evidence that free-recall data scored with lrd to is
consistent to what is generated by human coders.

Sentence scoring functions validation

We now detail a set of analyses that were designed to test lrd’s
ability to accurately score sentence recall. We begin by pro-
viding a description of the dataset and note that these analyses
closely follow the procedure used to validate both the cued-
and free-recall functions by testing potential cutoff values for
scoring, testing whether the lrd-scored output can replicate the
original human-coded data, and assessing the reliability
between coding sources.

Participants and materials

Data in the following analyses were originally published as
part of Geller et al. (2020) and are available at https://osf.io/
ag7nc/. Geller et al. (2020) included 100 participants who
listened to 20 sentences taken from AzBio (Spahr et al.,
2012), a large, open-set database of recorded sentences.

Table 5 Sensitivity and specificity results for Huff et al.'s (2018) free-
recall data

List type Scoring criteria Sensitivity (%) Specificity (%)

Ad-hoc 0 96 94

1 96 95

2 94 95

3 95 96

4 91 96

5 90 96

Categorical 0 98 90

1 98 91

2 96 91

3 93 93

4 91 93

5 91 93

Unrelated 0 98 96

1 97 96

2 96 96

3 93 96

4 92 96

5 92 96

Note: Analyses are split by list type. Scoring criteria indicates
Levenshtein distance used when running prop_correct_
multiple().

Behav Res (2022) 54:2001–2024 2019

https://osf.io/ag7nc/
https://osf.io/ag7nc/

After listening to each sentence, participants were instructed
to immediately type each sentence from memory exactly as
heard. Typed responses were then manually coded by two
independent reviewers, leading to two sets of human-coded
data (each consisting of 2000 responses) with which to test
lrd’s sentence scoring functions.

Data processing and scoring

To test the reliability of this package’s sentence scoring capa-
bilities, we began by using lrd to process the dataset described

above using each of the six Levenshtein distance cutoffs.
Because Geller et al. (2020) scored their output using two
independent coders, we treated each coder as a separate
dataset. Afterwards, we compared output obtained using lrd
to each set of manually coded output and tested whether the
lrd-scored data would replicate the original findings. Before
running the scoring algorithm, we generated two .csv files
(one for each human coder) containing participant responses,
answer key, trial numbers, and unique identifiers for each
participant. We then scored each dataset using the
prop_correct_sentence() function. Consistent with
the previous analyses, this scoring process was iterative such
that we used each of the six Levenshtein distances. This re-
sulted in each dataset being scored six times, allowing us
again to track how changing the cutoff criteria affected scoring
accuracy.

Determining the optimal scoring criterion

Before scoring the data, we again needed to determine the
optimal cutoff value for the sentence-scoring function that
would maximize the number of true positives while minimiz-
ing the number of false positives and false negatives. To do so,
we again turn to a series of sensitivity and specificity analyses,

Table 6 Mean correct free-recall as a function of human-coded and lrd-scored data for each list type used in Huff et al. (2018)

List Type Group M HC lrd 0 lrd 1 lrd 2 lrd 3 lrd 4

Ad hoc Human coded 50.00 (2.78) --

lrd 0 49.29 (2.74) 0.05 --

lrd 1 49.83 (2.73) 0.01 0.03 --

lrd 2 50.69 (2.75) 0.04 0.09 0.06 --

lrd 3 52.48 (3.16) 0.15 0.19 0.16 0.11 --

lrd 4 53.10 (3.24) 0.18 0.23 0.20 0.14 0.03 --

lrd 5 53.15 (3.24) 0.19 0.23 0.20 0.15 0.02 < 0.01

Categorical Human coded 47.85 (2.50) --

lrd 0 44.15 (2.67) 0.25* --

lrd 1 44.83 (2.64) 0.21 0.05 --

lrd 2 45.58 (2.70) 0.14 0.10 0.05 --

lrd 3 48.54 (3.13) 0.04 0.27* 0.23 0.18 --

lrd 4 49.56 (3.25) 0.11 0.33* 0.29* 0.24 0.06 --

lrd 5 49.56 (3.25) 0.11 0.33* 0.29* 0.24 0.06 0.00

Unrelated Human-coded 37.99 (2.68) --

lrd 0 37.98 (2.76) < 0.01 --

lrd 1 38.08 (2.77) < 0.01 < 0.01 --

lrd 2 38.94 (2.83) 0.06 0.06 0.05 --

lrd 3 40.88 (3.37) 0.17 0.17 0.16 0.11 --

lrd 4 41.17 (3.48) 0.22 0.21 0.21 0.16 0.04 --

lrd 5 41.17 (3.48) 0.22 0.21 0.21 0.16 0.04 0.00

Note.Mean recall rates for each scoring condition. 95%CIs are in parentheses. HC = Human-coded data. lrd columns and row labels indicate each of the
tested cutoff criteria. HC and percentage columns indicate Cohen’s d effect sizes for post-hoc comparisons, * = p < .05.

Table 7 Inter-rater reliability statistics (Cohen’s κ) for Huff et al's.
(2018) free-recall data

List type lrd 0 lrd 1 lrd 2 lrd 3 lrd 4 lrd 5

Ad hoc .90 .91 .90 .87 .86 .86

Categorical .89 .89 .88 .86 .85 .85

Unrelated .93 .94 .92 .88 .86 .86

Note. List type corresponds to the three study lists conditions used in Huff
et al. (2018). lrd columns indicate each of the tested cutoff criteria All
values are Cohen’s κ between human-scored data and data scored at each
lrd cutoff

2020 Behav Res (2022) 54:2001–2024

comparing the lrd-scored data at each Levenshtein distance
cutoff to each of the two human coders who originally scored
the Geller et al. (2020) dataset. Table 8 displays sensitivity and
specificity percentages for each of the six selected values.
Overall, sensitivity and specificity were maximized when
low Levenshtein distances (≤ 1) were selected, suggesting that
these values maximized correct hits while simultaneously lim-
iting false positives and negatives. As such, we propose that a
value of 1 be selected when using lrd to perform sentence
matching as this will provide some correction for minor dis-
crepancies between the key and response (e.g., spelling er-
rors), but note that as with the other scoring functions, this
value can be modified as needed to provide flexibility in
scoring.

Analyses and results

After determining the optimal cutoff value for scoring, we
next conducted a series of analyses testing whether sentence
data scored with lrd successfully replicates the human-coded
dataset. We begin this section by providing descriptive statis-
tics for recall rates in both the human- and lrd-scored datasets
and test whether these datasets significantly differ as a func-
tion of coding source. We then conclude our analyses of the
sentence-recall data by assessing the inter-rater reliability be-
tween each dataset.

Replication of sentence-recall studies

First, data from each of the three list types were scored with
lrd using all six Levenshtein distance cutoff values between 0
and 5. Next, two one-way ANOVAs were conducted, testing
whether recall rates differed between the seven scoring types
(the six lrd scoring criteria plus the human-coded data) for
each of the two human coders. Table 9 reports means, 95%
CIs, and Cohen’s d effect sizes for all comparisons.

Beginning with data scored by the first human coder, a
significant difference was detected between the manually
and lrd-scored data, F(6, 594) = 204.37, MSE = 22.02, p <
.001, η2G =.12; however, post hoc t tests revealed that this
effect was largely driven by differences between the human-
coded data and the data scored with lrd using more lenient
cutoffs. Specifically, recall rates differed from the human-
scored data (M = 31.80) when a cutoff of 3 (M = 40.15), 4
(M = 44.55), or 5 (M = 46.45) were selected (ts ≥ 3.58, ds ≥
0.51). However, the lrd-scored data did not differ from the
human-coded data when it was scored using cutoffs of 0 (M
= 29.10), 1 (M = 32.90), or 2 (M = 34.25; ts ≤ 1.12, ps ≥ .265).
When compared to the second human coder, an effect of cod-
ing source was again detected, F(6, 594) = 209.77, MSE =
21.89, p < .001, η2G = .12. This effect largely followed the
same patterns as the first human coder such that mean recall
rates differed from the human-scored data (M = 31.30) when
lrd scoring used cutoffs of 3 or greater (ts ≥ 3.75, ds ≥ 0.53).
However, the lrd-scored data again did not differ from the
human-coded data when scored using cutoffs less than 3 (ts
≤ 1.33, ps ≥ .186). Given the result of these analyses, using lrd
to score sentence-recall did not result in significant changes
when scoring used more stringent cutoff values (e.g., using a
Levenshtein distance < 3). The results of these analyses sug-
gest that when using the appropriate settings, lrd can score
sentence responses with similar accuracy to human coders.

Inter-rater reliability

Finally, we tested the inter-rater between each human coder
and lrd by computing κ values for at the individual trial level.
Table 10 reports individual κ statistics for all comparisons
within each for each of the human coders. Beginning with
sentences scored by the first human coder, a strong agreement
was detected between the human- and lrd-scored data when a
cutoff value of at least 2 was used, κs ≥ .90, and a moderate
agreement was found when sentences were scored using a

Table 8 Sensitivity and
specificity results for Geller
et al.'s (2020) sentence-recall data

Scoring criteria Coder 1 Coder 2

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

lrd 0 99 91 99 93

lrd 1 97 96 97 98

lrd 2 95 97 95 98

lrd 3 87 99 87 99

lrd 4 81 99 80 99

lrd 5 78 99 78 99

Note.Column labels indicate Levenshtein distance used at scoring. Values denote percentages. For completeness,
we compare lrd sensitivity and specificity to both human coders from Geller et al. (2020)

Behav Res (2022) 54:2001–2024 2021

cutoff of 3 or higher, κs ≥ .69. This pattern extended to the
second human coder. Again, a strong agreement between the
lrd- and human-coded data emerged when a cutoff of at least 2
was used, κs ≥ .91. A moderate agreement was again detected
when sentences were scored using a cutoff value of 3 or
higher, κs ≥ .69. Thus, based on this set of results of these
analyses, we propose using a Levenshtein cutoff of 1 when
using lrd to score sentence recall, as this value provided strong
agreement between both sets of human-coded data while still
granting flexibility in participant responses due to minor er-
rors. Given the strong agreement detected by these analyses,
sentence data scored with lrd to is comparable to output gen-
erated by human coders.

General discussion

The goal of lrd is to provide researchers with a free, open-
source method for quickly and accurately processing lexical
output from cued-recall, free-recall, and sentence-recall stud-
ies. Across each of these three memory tasks, data scored
using lrd consistently matched output from human coders
reliably and accurately. Importantly, our use of fuzzy string
matching via Levenshtein distances provides lrd with in-
creased flexibility in scoring compared to direct string
matching. Furthermore, because researchers can select from
a range of Levenshtein distances when setting up the scoring
functions, this flexibility can be adjusted as needed. However,
care must be taken when selecting this scoring cutoff, as our
analyses showed that findings will change if too lenient (or
strict) of a cutoff is used. Thus, an interesting question be-
comes which cutoff value provides sufficient flexibility to
account for common participant errors without being so le-
nient that blatantly incorrect responses are counted as correct?

In general, our analyses suggest the use of a stricter cutoff
when scoring recall data across the three test types. For exam-
ple, across recall tasks, lrd provided the closest match to

human coders when scoring used a Levenshtein distance of
1. We note, however, that both the type of recall task and the
nature of the stimuli may need to be considered when
selecting the cutoff value. This result is evident in our free-
recall analyses, as scoring of categorical and ad hoc lists was
most accurate when using a cutoff of 1, while scoring of un-
related pairs most closely matched human coders when a cut-
off of 0 was used. However, we note that the difference be-
tween cutoffs of 0 and 1 were small and would likely produce
fewer difference in the final analyses. Importantly, the flexi-
bility of the lrd scoring criteria settings allows researchers to
adjust scoring based on the materials and the frequency of
response errors provided by participants. For instance, a more
lenient cutoff may be appropriate if list items are prone to
spelling errors, and a stricter cutoff may be appropriate if the
study list contains several words that are within one or two
characters of one another (e.g., bear and tear). Thus, while we
recommend using a cutoff of 1 in most situations, the choice
of cutoff value will ultimately be dictated by the nature of the
recall task and the stimuli used.

Though we developed lrd to process lexical output from
memory studies, recent work in the domain of speech percep-
tion has also led to the development of tools for automatically
scoring lexical responses. Specifically, the Autoscore package
for R (Borrie et al., 2019) and Bosker’s (in press) application
for computing Token Sort Ratio (TSR) each provide

Table 9 Mean correct sentence-recall as a function of human-coded and lrd-scored data for each coder in Geller et al. (2020)

Group M HC 1 HC 2 lrd 0 lrd 1 lrd 2 lrd 3 lrd 4

Human-coded 1 31.80 (2.88) --

Human-coded 2 31.30 (2.97) 0.03 --

lrd 0 29.10 (2.81) 0.18 0.15 --

lrd 1 32.90 (3.10) 0.07 0.10 0.25 --

lrd 2 34.25 (3.18) 0.16 0.19 0.34* 0.08 --

lrd 3 40.15 (3.55) 0.51* 0.53* 0.66* 0.43* 0.34* --

lrd 4 44.45 (3.79) 0.74* 0.76* 0.91* 0.66* 0.58* 0.23 --

lrd 5 46.45 (3.90) 0.84* 0.86* 1.00* 0.75* 0.67* 0.33* 0.10

Note.Mean recall rates for each scoring condition. 95%CIs are in parentheses. HC = Human-coded data. lrd columns and row labels indicate each of the
tested cutoff criteria. HC and percentage columns indicate Cohen’s d effect sizes for post hoc comparisons, * = p < .05.

Table 10 Inter-rater reliability statistics (Cohen’s κ) for each human
coder used in Geller et al.'s (2020) sentence-recall data

Coder lrd 0 lrd 1 lrd 2 lrd 3 lrd 4 lrd 5

One .93 .92 .90 .81 .72 .69

Two .94 .94 .91 .80 .72 .69

Note. lrd columns indicate Levenshtein distance used at scoring. All
values are Cohen’s κ between human-scored data and data scored at each
lrd cutoff.

2022 Behav Res (2022) 54:2001–2024

researchers with alternative methods for matching lexical text
data and could be potentially applied to memory research.
Like lrd, Autoscore and TSR were designed to expedite scor-
ing of lexical text responses while maintaining the accuracy of
a human coder. However, these applications differ both from
each other and from lrd in their general approach to string
matching, and furthermore, neither Autoscore nor TSR were
specifically designed to score lexical output from memory
studies. Instead, these tools were developed to assist with
matching transcribed audio (typically sentences or phrases)
to a key. Thus, while these tools can be used for single-word
matching, they are most appropriate for sentence-matching
tasks and are therefore akin to lrd’s sentence-recall function.

In addition to being designed primarily for matching re-
sponses from audio transcripts, these applications differ from
lrd in other key aspects. First, Autoscore controls for partici-
pant errors via a set of hard-coded spelling and grammar rules
that are available for the user to select from (e.g., match words
based on root words, ignore double letters, etc.). While a rule-
based approach can account for several common response
errors, it requires researchers to guess which type of errors
will be most likely to occur, rather having the flexibility to
account for errors as they are detected. TSR, on the other hand,
uses a fuzzy-matching approach in which individual tokens
(i.e., words) comprising the key and the response are each
sorted alphabetically before comparing the match between
the two ordered strings (Bosker, in press). However, while
lrd and TSR provide means of fuzzy string matching, lrd’s
use of Levenshtein distance is more appropriate for the single-
word responses commonly used in memory research (e.g.,
cued- and free-recall testing).

Further, while Autoscore and TSR were each designed for
matching sentences, lrd’s sentence scoring matching provides
additional functionality by including output for omitted and
extra items from each participant’s response, allowing re-
searchers to whether certain words in each sentence are com-
monly forgotten. Neither Autoscore nor TSRwere designed to
handle open-ended response tasks such as free recall, in which
there is not always a direct one-to-one correspondence be-
tween participant responses and answer key items. Finally,
lrd includes several plotting and summary functions, allowing
researchers to quickly assess trends in their scored output.
Taken together, lrd provides researchers with a comprehen-
sive set of tools that are particularly tailored towards scoring
lexical output from a variety of recall paradigms quickly and
accurately while also providing options for data visualization
and exploration.

Summary and conclusion

Although recall tests are widely used in psychology, few
open-access tools currently exist to quickly process the large

amounts of lexical text data that these studies generate. The lrd
package addresses this need by providing researchers with a
means of automating multiple types of recall scoring as a
means of saving time and minimize coding errors, while also
being able to control for minor errors in participant responses.
By using this package to replicate results from cued-recall,
free-recall, and sentence-recall experiments, we show that
lrd can accurately reproduce each type of data. We hope that
lrd will both drastically reduce the amount of time spent cod-
ing lexical data while ensuring near-perfect accuracy and as-
sist the reproducibility measures being adopted by the field by
providing researchers with a standardized, open-source meth-
od for processing lexical output across psychological studies.

Author Note The source code for this package is available at https://
github.com/npm27/lrd/. All applicable analysis files have been made
available at https://osf.io/admyx/. The Shiny application can be
accessed at: https://npm27.shinyapps.io/lrd_shiny/ and a user guide is
available at www.macapsych.com/lexical-re. We would like to thank
Jason Geller for providing sentence-recall data for this manuscript.

References

Altman, D. G., & Bland, J. M. (1994). Diagnostic tests. 1: Sensitivity and
specificity. BMJ :British Medical Journal, 308(6943), 1552. https://
doi.org/10.1136/bmj.308.6943.1552

Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B.,
Loftis, B., Neely, J. H., Nelson, D. L., Simpson, G. B., & Treiman,
R. (2007). The English Lexicon Project. Behavior Research
Methods, 39(3), 445–459. https://doi.org/10.3758/BF03193014

Becker, J., Chan, C., Chan, G. C., Leeper, T. J., Gandrud, C.,MacDonald,
A., Zahn, I., Stadlmann, S., Williamson, R., Kennedy, P., Price, R.,
Davis, T. L., Day, N., Denney, B., & Bokov, A. (2021). rio: A
Swiss-Army Knife for Data I/O (0.5.26) [Computer software].
https://CRAN.R-project.org/package=rio

Borrie, S. A., Barrett, T. S., & Yoho, S. E. (2019). Autoscore: An open-
source automated tool for scoring listener perception of speech. The
Journal of the Acoustical Society of America, 145(1), 392–399.
https://doi.org/10.1121/1.5087276

Bosker, H. R. (in press). Using fuzzy string matching for automated
assessment of listener transcripts in speech intelligibility studies.
Behavior Research Methodshttps://doi.org/10.3758/s13428-021-
01542-4

Brysbaert, M., Mandera, P., McCormick, S. F., & Keuleers, E. (2019).
Word prevalence norms for 62,000 English lemmas. Behavior
Research Methods, 51(2), 467–479. https://doi.org/10.3758/
s13428-018-1077-9

Brysbaert, M., Warriner, A. B., & Kuperman, V. (2014). Concreteness
ratings for 40 thousand generally known English word lemmas.
Behavior Research Methods, 46(3), 904–911. https://doi.org/10.
3758/s13428-013-0403-5

Buchanan, E. M., Valentine, K. D., & Maxwell, N. P. (2019). LAB:
Linguistic Annotated Bibliography – a searchable portal for normed
database information. Behavior Research Methods, 51(4), 1878–
1888. https://doi.org/10.3758/s13428-018-1130-8

Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon’s
Mechanical Turk: A New Source of Inexpensive, Yet High-
Quality, Data? Perspectives on Psychological Science, 6(1), 3–5.
https://doi.org/10.1177/1745691610393980

Behav Res (2022) 54:2001–2024 2023

https://github.com/npm27/lrd/
https://github.com/npm27/lrd/
https://osf.io/admyx/
https://npm27.shinyapps.io/lrd_shiny/
http://www.macapsych.com/lexical-re
https://doi.org/10.1136/bmj.308.6943.1552
https://doi.org/10.1136/bmj.308.6943.1552
https://doi.org/10.3758/BF03193014
https://cran.r-project.org/package=rio
https://doi.org/10.1121/1.5087276
https://doi.org/10.3758/s13428-021-01542-4
https://doi.org/10.3758/s13428-021-01542-4
https://doi.org/10.3758/s13428-018-1077-9
https://doi.org/10.3758/s13428-018-1077-9
https://doi.org/10.3758/s13428-013-0403-5
https://doi.org/10.3758/s13428-013-0403-5
https://doi.org/10.3758/s13428-018-1130-8
https://doi.org/10.1177/1745691610393980

Chang, W., Cheng, J., Allaire, J. J., Sievert, C., Schloerke, B., Xie, Y.,
Allen, J., McPherson, J., Dipert, A., & Borges, B. (2021). shiny:
Web Application Framework for R (1.6.0) [Computer software].
https://CRAN.R-project.org/package=shiny

Chang, W., & Ribeiro, B. B. (2018). shinydashboard: Create
Dashboards with “Shiny” (0.7.1) [Computer software]. https://
CRAN.R-project.org/package=shinydashboard

Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales.
Educational and Psychological Measurement, 20(1), 37–46.
https://doi.org/10.1177/001316446002000104

Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A frame-
work for memory research. Journal of Verbal Learning and Verbal
Behavior, 11(6), 671–684. https://doi.org/10.1016/S0022-5371(72)
80001-X

Criss, A. H., Aue, W. R., & Smith, L. (2011). The effects of word fre-
quency and context variability in cued recall. Journal of Memory
and Language, 64(2), 119–132. https://doi.org/10.1016/j.jml.2010.
10.001

De Deyne, S., Navarro, D. J., Perfors, A., Brysbaert, M., & Storms, G.
(2019). The “Small World of Words” English word association
norms for over 12,000 cue words. Behavior Research Methods,
51(3), 987–1006. https://doi.org/10.3758/s13428-018-1115-7

Dowle, M., & Srinivasan, A. (2020). data.table: Extension of
‘data.frame‘. Retrieved fromhttps://CRAN.R-project.org/package=
data.table. Accessed 13 April 2021

Geller, J., McMurray, B., Choi, I., & Holmes, A. (2020).Validation of the
Iowa Test of Consonant Perception [Preprint]. PsyArXiv. https://
doi.org/10.31234/osf.io/wxd93

Gretz,M. R., &Huff,M. J. (2019). Did you wash your hands? Evaluating
memory for objects touched by healthy individuals and individuals
with contagious and noncontagious diseases. Applied Cognitive
Psychology, 33(6), 1271–1278. https://doi.org/10.1002/acp.3604

Huff, M. J., Yates, T. J., & Balota, D. A. (2018). Evaluating the contri-
butions of task expectancy in the testing and guessing benefits on
recognition memory. Memory (Hove, England), 26(8), 1065–1083.
https://doi.org/10.1080/09658211.2018.1467929

Hutchison, K. A., Balota, D. A., Neely, J. H., Cortese, M. J., Cohen-
Shikora, E. R., Tse, C.-S., Yap, M. J., Bengson, J. J., Niemeyer,
D., & Buchanan, E. (2013). The semantic priming project.
Behavior Research Methods, 45(4), 1099–1114. https://doi.org/10.
3758/s13428-012-0304-z

Kahana, M. J. (1996). Associative retrieval processes in free recall.
Memory & Cognition, 24(1), 103–109. https://doi.org/10.3758/
BF03197276

Kahana, M. J., Howard,M.W., Zaromb, F., &Wingfield, A. (2002). Age
dissociates recency and lag recency effects in free recall. Journal of
Experimental Psychology: Learning, Memory, and Cognition,
28(3), 530–540. https://doi.org/10.1037/0278-7393.28.3.530

Koriat, A., & Bjork, R. A. (2005). Illusions of Competence inMonitoring
One’s Knowledge During Study. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 31(2), 187–194.
https://doi.org/10.1037/0278-7393.31.2.187

Kuhn, M. (2008). Building Predictive Models in R Using the caret
Package. Journal of Statistical Software, 28(1), 1–26. https://doi.
org/10.18637/jss.v028.i05

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics-Doklady, 10(8), 707–710

Maxwell, N. P., & Buchanan, E. M. (2020). Investigating the interaction
of direct and indirect relation on memory judgments and retrieval.

Cognitive Processing, 21(1), 41–53. https://doi.org/10.1007/
s10339-019-00935-w

Maxwell, N. P., & Huff, M. J. (2021). The deceptive nature of associative
word pairs: The effects of associative direction on judgments of
learning. Psychological Research, 85, 1757–1775. https://doi.org/
10.1007/s00426-020-01342-z

Maxwell, S. E., Lau, M. Y., & Howard, G. S. (2015). Is psychology
suffering from a replication crisis? What does “failure to replicate”
really mean? American Psychologist, 70(6), 487–498. https://doi.
org/10.1037/a0039400

Murdock, B. B. (1962). The serial position effect of free recall. Journal of
Experimental Psychology, 64(5), 482–488. https://doi.org/10.1037/
h0045106

Paivio, A., Clark, J. M., & Khan, M. (1988). Effects of concreteness and
semantic relatedness on composite imagery ratings and cued recall.
Memory & Cognition, 16(5), 422–430. https://doi.org/10.3758/
BF03214222

Polyn, S. M., Norman, K. A., & Kahana, M. J. (2009). A context main-
tenance and retrieval model of organizational processes in free re-
call. Psychological Review, 116(1), 129–156. https://doi.org/10.
1037/a0014420

Revelle, W. (2020). psych: Procedures for Psychological, Psychometric,
and Personality Research (2.0.12) [Computer software]. https://
CRAN.R-project.org/package=psych

Singla, N., & Garg, D. (2012). String Matching Algorithms and their
Applicability in various Applications. International Journal of Soft
Computing and Engineering, 1(6), 218–222.

Spahr, A. J., Dorman, M. F., Litvak, L. M., Van Wie, S., Gifford, R. H.,
Loizou, P. C., Loiselle, L. M., Oakes, T., & Cook, S. (2012).
Development and validation of the AzBio sentence lists. Ear and
Hearing, 33(1), 112–117. https://doi.org/10.1097/AUD.
0b013e31822c2549

Taylor, J. E., Beith, A., & Sereno, S. C. (2020). LexOPS: An R package
and user interface for the controlled generation of word stimuli.
Behavior Research Methods, 52(6), 2372–2382. https://doi.org/10.
3758/s13428-020-01389-1

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D.,
François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J.,
et al. (2019). Welcome to the tidyverse. Journal of Open Source
Software, 4, 1686.

Wahlheim, C. N., & Huff, M. J. (2015). Age differences in the focus of
retrieval: Evidence from dual-list free recall. Psychology and Aging,
30(4), 768–780. https://doi.org/10.1037/pag0000049

Wickham, H. (2007). Reshaping Data with the reshape Package. Journal
of Statistical Software, 21(1), 1–20. https://doi.org/10.18637/jss.
v021.i12

Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K.,
Wilke, C., Woo, K., Yutani, H., Dunnington, D., & RStudio.
(2021). ggplot2: Create Elegant Data Visualisations Using the
Grammar of Graphics (3.3.5) [Computer software]. https://CRAN.
R-project.org/package=ggplot2

Wickham, H., Hester, J., & Chang, W. (2020). devtools: Tools to Make
Developing R Packages Easier (2.3.2) [Computer software]. https://
CRAN.R-project.org/package=devtools

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

2024 Behav Res (2022) 54:2001–2024

https://cran.r-project.org/package=shiny
https://cran.r-project.org/package=shinydashboard
https://cran.r-project.org/package=shinydashboard
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1016/S0022-5371(72)80001-X
https://doi.org/10.1016/S0022-5371(72)80001-X
https://doi.org/10.1016/j.jml.2010.10.001
https://doi.org/10.1016/j.jml.2010.10.001
https://doi.org/10.3758/s13428-018-1115-7
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table
https://doi.org/10.31234/osf.io/wxd93
https://doi.org/10.31234/osf.io/wxd93
https://doi.org/10.1002/acp.3604
https://doi.org/10.1080/09658211.2018.1467929
https://doi.org/10.3758/s13428-012-0304-z
https://doi.org/10.3758/s13428-012-0304-z
https://doi.org/10.3758/BF03197276
https://doi.org/10.3758/BF03197276
https://doi.org/10.1037/0278-7393.28.3.530
https://doi.org/10.1037/0278-7393.31.2.187
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1007/s10339-019-00935-w
https://doi.org/10.1007/s10339-019-00935-w
https://doi.org/10.1007/s00426-020-01342-z
https://doi.org/10.1007/s00426-020-01342-z
https://doi.org/10.1037/a0039400
https://doi.org/10.1037/a0039400
https://doi.org/10.1037/h0045106
https://doi.org/10.1037/h0045106
https://doi.org/10.3758/BF03214222
https://doi.org/10.3758/BF03214222
https://doi.org/10.1037/a0014420
https://doi.org/10.1037/a0014420
https://cran.r-project.org/package=psych
https://cran.r-project.org/package=psych
https://doi.org/10.1097/AUD.0b013e31822c2549
https://doi.org/10.1097/AUD.0b013e31822c2549
https://doi.org/10.3758/s13428-020-01389-1
https://doi.org/10.3758/s13428-020-01389-1
https://doi.org/10.1037/pag0000049
https://doi.org/10.18637/jss.v021.i12
https://doi.org/10.18637/jss.v021.i12
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=devtools
https://cran.r-project.org/package=devtools

	The lrd package: An R package and Shiny application for processing lexical data
	Abstract
	Overview of the lrd package
	Installation and setup
	Cued-recall scoring functions example

	Materials and dataset creation
	Formatting and loading the dataset
	Scoring cued-recall data
	Free-recall scoring functions example
	Materials and dataset creation
	Formatting and loading the dataset
	Scoring free-recall data
	Scoring free-recall responses from multiple lists
	Calculating serial-position-based measures in free recall
	Sentence scoring function example
	Materials and dataset creation
	Formatting and loading the dataset
	Scoring sentence data
	R shiny application
	Cued-recall tab
	Free-recall tab
	Multiple free-recall tab
	Sentence-recall tab
	Validation of scoring functions
	Cued-recall scoring functions validation
	Participants and materials
	Data processing and scoring
	Determining the optimal scoring criterion
	Analyses and results
	Replication of cued-recall studies
	Inter-rater reliability
	Free-recall scoring functions validation
	Participants and materials
	Data processing and scoring
	Determining the optimal scoring criterion
	Analyses and results
	Replication of free-recall studies
	Inter-rater reliability
	Sentence scoring functions validation
	Participants and materials
	Data processing and scoring
	Determining the optimal scoring criterion
	Analyses and results
	Replication of sentence-recall studies
	Inter-rater reliability
	General discussion
	Summary and conclusion
	References

